Review: A Modest Approach of Electrochemical Sensor to Determine Biogenic Amines in Food and Beverages
DOI:
https://doi.org/10.59897/jsi.v1i3.25Keywords:
Biogenic amines, electrochemical sensor, chemical sensor, biosensorAbstract
Biogenic amines are chemical compounds that can be found in protein food. The analysis of biogenic amines in food samples is very important because the toxicity released by them is very adverse if consumed by human. Several methods have been applied and developed in order to detect biogenic amines such as liquid chromatography (LC) and gas chromatography (GC). Nevertheless, both of them are time consuming and using many chemical compounds. Thus, electrochemical sensors become the best solution in order to solve the issues from chromatography methods. Electrochemical sensors are very simple, easy to use and cheap. This paper reviews about various techniques of electrochemical sensor such as chemical sensors, biosensors and optical sensors that have been used for biogenic amines detection.
References
Akhoundian, M., Ruter, A. & Shinde, S. (2017). Ultratrace detection of histamine using a molecularly-imprinted polymer-based voltammetric sensor. Sensors. 17 (3): 645 – 654.
Akhtar, H.M.; Sameer, H. & Parameswar, K.I. (2016). Aggregation-Induced FRET via Polymer–Surfactant Complexation: A New Strategy for the Detection of Spermine. Analytical Chemistry. 88: 7358–7364.
Alizadeh, N., Kamalabadi, M. & Mohammadi, A. (2017). Determination of histamine and tyramine in canned fish samples by headspace solid-phase microextraction based on a nanostructured polypyrrole fiber followed by ion mobility spectrometry. Food Analytical Methods. 1 – 8.
Almeida, C., Fernandes, J.O. & Cunha, S.C. (2012). A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer. Food Control. 25: 380 – 388.
Alonso-Lomillo, M.A., Renedo, O.D., Matos, P. & Arcos-Martinez, M.J. (2010). Disposable biosensors for determination of biogenic amines. Analytica Chimica Acta. 665: 26 – 31.
Apetrei, I.M. & Apetrei, C. (2016). Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors. 16: 422 – 436.
Ben, A.M., Korpan, Y., Gonchar, M., Elskaya, A., Maaref, M.A., Jaffrezic-Renault, N. & Martelet, C. (2006). Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane. Biosensors & Bioelectronics. 22 (5): 575 – 581.
Boka, B., Adanyi, N., Szamos, J., Virag, D. & Kiss, A. (2012). Putrescine biosensor based on putrescine oxidase from Kocuria rosea. Enzyme and Microbial Technology. 51: 258 – 262.
Boka, B., Adanyi, N., Virag, D., Sebela, M. & Kiss, A. (2011). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis. 24(1): 181 – 186.
Carelli, D., Centonze, D., Palermo, C., Quinto, M. & Rotunno, T. (2007). An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosensors & Bioelectronics. 23: 640 – 647.
Carralero, V., Cortes, A.G., Sedeno, P.Y. & Pingarron, J.M. (2005). Pulsed amperometric detection of histamine at glassy carbon electrodes modified with gold nanoparticles. Electroanalysis. 17 (4): 289 – 297.
Castro, S.S.L., de Oliveira, M.F. & Stradiotto, N.R. (2010). Study of the electrochemical behaviour of histamine using Nafion® - Copper (II) hexacyanoferrate film – modified electrode. International Journal of Electrochemical Science. 5: 1447 – 1456.
Chopra, S., Singh, J., Kaur, H., Singh, A., Singh, N. & Kaur, N. (2015). Colorimetric detection of spermine by the Cu (II) complex of imine-based organic nanoaggregates in aqueous medium. European Journal of Inorganic Chemistry. 2015: 4437 – 4442.
Cohen, G., Rudnik, D.D., Laloush, M., Yakir, D. & Karpas, Z. (2015). A novel method for determination of histamine in tuna fish by IMS. Food Analytical Methods. 8: 2376 – 2382.
Dai, J., Zhang, Y., Pan, M., Kong, L. & Wang, S. (2014). Development and application of Quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods. Journal of Agricultural and Food Chemistry. 62: 5269 – 5274.
Degefu, H., Amare, M., Tessema, M. & Admassie, S. (2014). Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples. Electrochimica Acta. 121: 307 – 314.
Dong, X.X., Yang, J.Y., Luo, L., Zhang, Y.F., Mao, C., Sun, Y.M., Lei, H.T., Shen, Y.D., Beier, R.C. & Xu, Z.L. (2017). Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosensors and Bioelectronics. 98: 305 – 309.
El-Nour, K.M.A., Salam, E.T.A., Soliman, H.M. & Orabi, A.S. (2017). Gold nanoparticles as a direct and rapid sensor for sensitive analytical detection of biogenic amines. Nanoscale Research Letters. 12: 231 – 241.
European Food Safety Authority (EFSA). European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2011. EFSA Journal. 11: 3129.
Faridbod, F., Gupta, V.K. & Zamani, H.A. (2011). Electrochemical sensors and biosensors. International Journal of Electrochemistry. 1 – 2.
Geto, A., Tessema, M. & Admassie, S. (2014). Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synthetic Metals 191: 135 – 140.
Jiang, S., Peng, Y., Ning, B., Bai, J., Liu, Y., Zhang, N. & Gao, Z. (2015). Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine. Sensors and Actuators B: Chemistry. 221: 15 – 21.
Jones, S.M., Burks, A.W. & Dupont, C. (2014). State of the art on food allergen immunotheraphy: oral, sublingual and epicutaneous. Journal of Allergy and Clinical Immunology. 133 (2): 318 – 323.
Justino, C.I.L., Freitas, A.C., Pereira, R., Duarte, A.C. & Rocha-Santos, T.A.P. (2015). Recent developments in recognition elements for chemical sensors and biosensors. Trends in Analytical Chemistry. 1 – 29.
Keow, C.M., Abu Bakar, F., Salleh, A.B., Heng, L.Y., Wagiran, R. & Bean, L.S. (2007). An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (penaeus monodon) spoilage. Food Chemistry. 105 (4): 1636 – 1641.
Khairy, G.M., Azab, H.A., El-Korashy, S.A., Steiner, M.S. & Duerkop, A. (2016). Validation of a fluorescence sensor microtiterplate for biogenic amines in meat and cheese. Journal of Fluorescence. 26 (5): 1905 – 1916.
Kiviranda, K. & Rinkena, T. (2011). Biosensors for biogenic amines. The present state of art mini – review. Analytical Letters. 44: 2821 – 2833.
Kumpf, J., Schwaebel, S.T. & Bunz, U.H.F. (2015). Amine detection with distyrylbenzenedialdehyde-based knoevenagel adducts. Journal of Organic Chemistry. 80: 5159 – 5166.
Lazaro, C.A. & Conte-Junior, C.A. (2013). Chromatographic methods for biogenic amines determination in foods of animal origin. Brazil Journal of Veterinary Research Animal Science. 50 (6): 430 – 446.
Lin, F., Kukkola, J., Sipola, T., Raut, D., Samikannu, A., Mikkola, J.P., Mohl, M., Toth, G., Su, W.F., Laurila, T. & Kordas, K. (2015). Trifluoroacetylazobenzene for optical and electrochemical detection of amines. Journal of Materials Chemistry A. 3: 4687 – 4695.
Mastnak, T., Lobnik, A., Mohr, G.J. & Turel, M. (2018). Design and characterization of dicyanovinyl reactive dyes for the colorimetric detection of thiols and biogenic amines. Sensors. 18: 814 – 826.
Micklicanin, E.O. & Valzacchi, S. (2017). Development of new chemiluminescence biosensors for determination of biogenic amines in meat. Food Chemistry. 1 – 33.
Munir, M.A., Assim, Z.B. & Ahmad, F.B. (2016). Characterization of biogenic amines in fish collected from Sarawak using gas chromatography. Borneo Journal of Resource Science and Technology. 6 (2): 1 – 8.
Muresan, L., Valeran, R.R., Frebort, I., Popescu, I.C., Csoregi, E. & Nistor, E. (2008). Amine oxidase amperometric biosensor coupled to liquid chromatography for biogenic amines determination. Microchimica Acta. 163 (3-4): 219 – 225.
Nedeljko, P., Turel, M. & Lobnik, A. (2017). Hbrid sol-gel based sensor layers for optical determination of biogenic amines. Sensors of Actuators B: Chemistry. 246: 1066 – 1073.
Nezakati, T., Seifalian, A., Tan, A. & Seifalian, A.M. (2018). Conductive polymers: Opportunities and challenges in biomedical applications. Chemical Reviews. 118: 6766 – 6843.
Onal, A., Tekkeli, S.E.K. & Onal, C. (2013). A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chemistry. 138: 509 – 515.
Papageorgiou, M., Lambropoulou, D., Morrison, C., Namiesnik, J. & Plotka-Wasylka, J. (2018). Direct solid phase microextraction combined with gas chromatography – mass spectrometry for the determination of biogenic amines in wine. Talanta. 1 – 23.
Perez, S., Bartroli, J. & Fabregas, E. (2013). Amperometric biosensor for the determination of histamine in fish samples. Food Chemistry. 141 (4): 4066 – 4072.
Rawat, K.A., Bhamore, J.R., Singhal, R.K. & Kailasa, S.K. (2016). Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorometric) detection of spermine and spermidine in biological samples. Biosensors & Bioelectronics. 88: 71 – 77.
Roales, J., Pedrosa, J.M., Guillen, M.G., Lopes-Costa, T., Pinto, S.M.A., Calvete, M.J.F. & Pereire, M.M. (2015). Optical detection of amine vapors using ZnTriad porphyrin thin films. Sensors and Actuators B: Chemical. 210: 28 – 35.
Romaskevic, T., Budriene, S., Pielichowski, K. & Pielichowski, J. (2006). Application of polyurethane-based materials for immobilization of enzymes and cells: a review. Chemija. 17 (4): 74 – 89.
Schaude, C., Meindl, C., Frohlich, E., Attard, J. & Mohr, G.J. (2017). Developing a sensor layer for the optical detection of amines during food spoilage. Talanta. 1 – 16.
Stojanovic, Z.S., Mehmeti, E., Kalcher, K., Guzsvany, V. & Stankovic, D.M. (2016). SWCNT-modified carbon paste electrode as an electrochemical sensor for histamine determination in alcoholic beverages. Food Analytical Methods. 9 (10): 2701 – 2710.
Svarc-Gajic, J. & Stojanovic, Z. (2010). Determination of histamine in cheese by chronopotentiometry on a thin film mercury electrode. Food Chemistry. 124: 1172 – 1176.
Svarc-Gajic, J. & Stojanovic, Z. (2011). Electrocatalytic determination of histamine on a nickel-film glassy carbon electrode. Electroanalysis. 22 (4): 2931 – 2939.
Telsnig, D., Kassarnig, V., Zapf, C., Leitinger, G., Kalcher, K. & Ortner, A. (2012). Characterization of an amperometric biosensor for the determination of biogenic amines in flow injection analysis. International Journal of Electrochemical and Science. 7: 10476 – 10486.
Trevisani, M., Mancusi, R., Cecchini, M., Costanza, C. & Prearo, M. (2017). Detection and characterization of histamine-producing strains of Photobacterium damselse subsp. Damselae isolated from mullets. Veterinary Sciences. 4: 31 – 42.
Turner, A.P.F. (2013). Biosensors: Sense and sensibility. Chemical Society Reviews. 42: 3184 – 3196.
Veseli, A., Vasjari, M., Arbneshi, T., Hajrizi, A., Svorc, L., Samphao, A. & Kalcher, K. (2016). Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium (IV) oxide. Sensors and Actuators B. 228: 774 – 781.
Wood, R.A. (2016). Food allergen immunotheraphy: Current status and prospects for the future. Journal of Allergy and Clinical Immunology. 137 (4): 973 – 982.
Yilmaz, U.T. & Inan, D. (2015). Quantification of histamine in various fish samples using square wave stripping voltammetric method. Journal of Food Science & Technology. 1 – 8.
Young, J.A., Jiang, X. & Kirchhoff, J.R. (2013). Amperometric detection of histamine with a pyrroloquinoline-quinone modified electrode. Electroanalysis. 25 (7): 1589 – 1593.
Yu, W., Freeland, D.M.H. & Nadeau, K.C. (2016) Food allergy: immune mechanisms, diagnosis and immunotheraphy. Nature Reviews Immunology. 16 (12): 751 – 765.


